# 浏览器对打开新页面的处理

默认情况下,chrome会为每个页面分配一个渲染进程,也就是说每打开一个新页面就会配套创建一个新的渲染进程。但是在某些情况下,浏览器会让多个页面直接运行在同一个渲染进程中。

# 那什么情况下多个页面会同时运行在一个渲染进程中呢

要解决这个问题,我们就需要先了解下什么是同一站点(same-site)。具体地讲,我们将“同一站点”定义为 根域名(例如,geekbang.org)加上 协议(例如,https:// 或者 http://),还包含了该根域名下的所有子域名和不同的端口,比如下面这三个:

https://time.geekbang.org
https://www.geekbang.org
https://www.geekbang.org:8080

它们都是属于同一站点,因为它们的协议都是 HTTPS,而且根域名也都是 geekbang.org
Chrome 的默认策略是,每个标签对应一个渲染进程。但 如果从一个页面打开了另一个新页面,而新页面和当前页面属于同一站点的话,那么新页面会复用父页面的渲染进程。官方把这个默认策略叫 process-per-site-instance

# 提交文档

首先要明确一点,这里的“文档”是指 URL 请求的响应体数据。

  • “提交文档”的消息是由浏览器进程发出的,渲染进程接收到“提交文档”的消息后,会和网络进程建立传输数据的“管道”。
  • 等文档数据传输完成之后,渲染进程会返回“确认提交”的消息给浏览器进程。
  • 浏览器进程在收到“确认提交”的消息后,会更新浏览器界面状态,包括了安全状态、地址栏的 URL、前进后退的历史状态,并更新 Web 页面 这也就解释了为什么在浏览器的地址栏里面输入了一个地址后,之前的页面没有立马消失,而是要加载一会儿才会更新页面。

到这里,一个完整的导航流程就“走”完了,这之后就要进入渲染阶段了。

# 渲染阶段

# 构建 DOM 树

为什么要构建 DOM 树呢?这是因为浏览器无法直接理解和使用 HTML,所以需要将 HTML 转换为浏览器能够理解的结构——DOM 树 为了更加直观地理解 DOM 树,你可以打开 Chrome 的“开发者工具”,选择“Console”标签来打开控制台,然后在控制台里面输入“document”后回车,这样你就能看到一个完整的 DOM 树结构
现在我们已经生成 DOM 树了,但是 DOM 节点的样式我们依然不知道,要让 DOM 节点拥有正确的样式,这就需要样式计算了

# 样式计算(Recalculate Style)

样式计算的目的是为了计算出 DOM 节点中每个元素的具体样式,这个阶段大体可分为三步来完成。

# 1. 把 CSS 转换为浏览器能够理解的结构

和 HTML 文件一样,浏览器也是无法直接理解这些纯文本的 CSS 样式,所以 当渲染引擎接收到 CSS 文本时,会执行一个转换操作,将 CSS 文本转换为浏览器可以理解的结构——styleSheets。 为了加深理解,你可以在 Chrome 控制台中查看其结构,只需要在控制台中输入 document.styleSheets

# 2. 转换样式表中的属性值,使其标准化

现在我们已经把现有的 CSS 文本转化为浏览器可以理解的结构了,那么接下来就要对其进行属性值的标准化操作。

要理解什么是属性值标准化,你可以看下面这样一段 CSS 文本

body { font-size: 2em }
p {color:blue;}
span  {display: none}
div {font-weight: bold}
div  p {color:green;}
div {color:red; }

可以看到上面的 CSS 文本中有很多属性值,如 2em、blue、bold,这些类型数值不容易被渲染引擎理解,所以 需要将所有值转换为渲染引擎容易理解的、标准化的计算值,这个过程就是属性值标准化

# 3. 计算出 DOM 树中每个节点的具体样式

  • 首先是 CSS 继承。CSS 继承就是每个 DOM 节点都包含有父节点的样式
  • 样式计算过程中的第二个规则是样式层叠。层叠是 CSS 的一个基本特征,它是一个定义了如何合并来自多个源的属性值的算法。它在 CSS 处于核心地位,CSS 的全称“层叠样式表”正是强调了这一点。关于层叠的具体规则这里就不做过多介绍了,网上资料也非常多,你可以自行搜索学习。

总之,样式计算阶段的目的是为了计算出 DOM 节点中每个元素的具体样式,在计算过程中需要遵守 CSS 的继承和层叠两个规则。这个阶段最终输出的内容是每个 DOM 节点的样式,并被保存在 ComputedStyle 的结构内

# 布局阶段

现在,我们有 DOM 树和 DOM 树中元素的样式,但这还不足以显示页面,因为我们还不知道 DOM 元素的几何位置信息。那么接下来就需要计算出 DOM 树中可见元素的几何位置,我们把这个计算过程叫做布局
Chrome 在布局阶段需要完成两个任务:创建布局树和布局计算

# 1. 创建布局树

你可能注意到了 DOM 树还含有很多不可见的元素,比如 head 标签,还有使用了 display:none 属性的元素。所以在显示之前,我们还要额外地构建一棵只包含可见元素布局树,为了构建布局树,浏览器大体上完成了下面这些工作:

  • 遍历 DOM 树中的所有可见节点,并把这些节点加到布局中;
  • 而不可见的节点会被布局树忽略掉,如 head 标签下面的全部内容,再比如 body.p.span 这个元素,因为它的属性包含 dispaly:none,所以这个元素也没有被包进布局树。

# 2. 布局计算

# 分层

面中有很多复杂的效果,如一些复杂的 3D 变换、页面滚动,或者使用 z-indexing 做 z 轴排序等,为了更加方便地实现这些效果,渲染引擎还需要为特定的节点生成专用的图层,并生成一棵对应的图层树浏览器的页面实际上被分成了很多图层,这些图层叠加后合成了最终的页面 原理如同ps 浏览器有一个父图层,那么需要满足什么条件,渲染引擎才会为特定的节点创建新的层呢?通常满足下面任意一点的元素就可以被提升为单独的一个图层。

  • 3D 或透视变换(perspective transform) CSS 属性
  • 使用加速视频解码的 <video> 元素 拥有 3D
  • (WebGL) 上下文或加速的 2D 上下文的 <canvas> 元素
  • 混合插件(如 Flash)
  • 对自己的 opacity 做 CSS动画或使用一个动画变换的元素
  • 拥有加速 CSS 过滤器的元素
  • 元素有一个包含复合层的后代节点(换句话说,就是一个元素拥有一个子元素,该子元素在自己的层里)
  • 元素有一个z-index较低且包含一个复合层的兄弟元素(换句话说就是该元素在复合层上面渲染)

# 图层绘制

在完成图层树的构建之后,渲染引擎会对图层树中的每个图层进行绘制,那么接下来我们看看渲染引擎是怎么实现图层绘制的?

试想一下,如果给你一张纸,让你先把纸的背景涂成蓝色,然后在中间位置画一个红色的圆,最后再在圆上画个绿色三角形。你会怎么操作呢?
通常,你会把你的绘制操作分解为三步:

  • 绘制蓝色背景;
  • 在中间绘制一个红色的圆;
  • 再在圆上绘制绿色三角形。 渲染引擎实现图层的绘制与之类似,会把一个图层的绘制拆分成很多小的绘制指令,然后再把这些指令按照顺序组成一个待绘制列表

# 栅格化(raster)操作

绘制列表只是用来记录绘制顺序和绘制指令的列表,而实际上绘制操作是由渲染引擎中的合成线程来完成的。

视口
通常一个页面可能很大,但是用户只能看到其中的一部分,我们把用户可以看到的这个部分叫做视口(viewport)。

在有些情况下,有的图层可以很大,比如有的页面你使用滚动条要滚动好久才能滚动到底部,但是通过视口,用户只能看到页面的很小一部分,所以在这种情况下,要绘制出所有图层内容的话,就会产生太大的开销,而且也没有必要。

基于这个原因,合成线程会将图层划分为图块(tile)

然后 合成线程会按照视口附近的图块来优先生成位图,实际生成位图的操作是由栅格化来执行的。所谓栅格化,是指将图块转换为位图。而图块是栅格化执行的最小单位。渲染进程维护了一个栅格化的线程池,所有的图块栅格化都是在线程池内执行的
通常,栅格化过程都会使用 GPU 来加速生成,使用 GPU 生成位图的过程叫快速栅格化,或者 GPU 栅格化,生成的位图被保存在 GPU 内存中
相信你还记得,GPU 操作是运行在 GPU 进程中,如果栅格化操作使用了 GPU,那么最终生成位图的操作是在 GPU 中完成的,这就涉及到了跨进程操作。具体形式你可以参考下图 渲染进程 从图中可以看出,渲染进程把生成图块的指令发送给 GPU,然后在 GPU 中执行生成图块的位图,并保存在 GPU 的内存中

# 合成和显示

一旦所有图块都被光栅化,合成线程就会生成一个绘制图块的命令——“DrawQuad”,然后将该命令提交给浏览器进程。

浏览器进程里面有一个叫 viz 的组件,用来接收合成线程发过来的 DrawQuad 命令,然后根据 DrawQuad 命令,将其页面内容绘制到内存中,最后再将内存显示在屏幕上。

到这里,经过这一系列的阶段,编写好的 HTML、CSS、JavaScript 等文件,经过浏览器就会显示出漂亮的页面了。

# 渲染流水线大总结

渲染流程总结

结合上图,一个完整的渲染流程大致可总结为如下:

  • 渲染进程将 HTML 内容转换为能够读懂的DOM 树结构。
  • 渲染引擎将 CSS 样式表转化为浏览器可以理解的styleSheets,计算出 DOM 节点的样式。
  • 创建布局树,并计算元素的布局信息。
  • 对布局树进行分层,并生成分层树。
  • 为每个图层生成绘制列表,并将其提交到合成线程。
  • 合成线程将图层分成图块,并在光栅化线程池中将图块转换成位图。
  • 合成线程发送绘制图块命令DrawQuad给浏览器进程。
  • 浏览器进程根据 DrawQuad 消息生成页面,并显示到显示器上

# 关于重排、重绘和合成

这三种方式的渲染路径是不同的,通常渲染路径越长,生成图像花费的时间就越多 。比如重排,它需要重新根据 CSSOM 和 DOM 来计算布局树,这样生成一幅图片时,会让整个渲染流水线的每个阶段都执行一遍,如果布局复杂的话,就很难保证渲染的效率了。而重绘因为没有了重新布局的阶段,操作效率稍微高点,但是依然需要重新计算绘制信息,并触发绘制操作之后的一系列操作。

相较于重排和重绘,合成操作的路径就显得非常短了,并不需要触发布局和绘制两个阶段,如果采用了 GPU,那么合成的效率会非常高。

所以,关于渲染引擎生成一帧图像的几种方式,按照效率我们推荐合成方式优先,若实在不能满足需求,那么就再退后一步使用重绘或者重排的方式。

本文我们的焦点在合成上,所以接下来我们就来深入分析下 Chrome 浏览器是怎么实现合成操作的。Chrome 中的合成技术,可以用三个词来概括总结:分层、分块和合成

# 关于分成与合成

通常页面的组成是非常复杂的,有的页面里要实现一些复杂的动画效果,比如点击菜单时弹出菜单的动画特效,滚动鼠标滚轮时页面滚动的动画效果,当然还有一些炫酷的 3D 动画特效。如果没有采用分层机制,从布局树直接生成目标图片的话,那么每次页面有很小的变化时,都会触发重排或者重绘机制,这种“牵一发而动全身”的绘制策略会严重影响页面的渲染效率。

为了提升每帧的渲染效率,Chrome 引入了分层和合成的机制。那该怎么来理解分层和合成机制呢?

你可以把一张网页想象成是由很 多个图片叠加在一起 的,每个图片就对应一个图层,Chrome 合成器最终将这些图层合成了用于显示页面的图片。如果你熟悉 PhotoShop 的话,就能很好地理解这个过程了,PhotoShop 中一个项目是由很多图层构成的,每个图层都可以是一张单独图片,可以设置透明度、边框阴影,可以旋转或者设置图层的上下位置,将这些图层叠加在一起后,就能呈现出最终的图片了。

在这个过程中,将素材分解为多个图层的操作就称为分层,最后将这些图层合并到一起的操作就称为合成。所以,分层和合成通常是一起使用的。

考虑到一个页面被划分为两个层,当进行到下一帧的渲染时,上面的一帧可能需要实现某些变换,如平移、旋转、缩放、阴影或者 Alpha 渐变,这时候合成器只需要将两个层进行相应的变化操作就可以了,显卡处理这些操作驾轻就熟,所以这个合成过程时间非常短。

理解了为什么要引入合成和分层机制,下面我们再来看看 Chrome 是怎么实现分层和合成机制的。

在 Chrome 的渲染流水线中,分层体现在生成布局树之后,渲染引擎会根据布局树的特点将其转换为层树(Layer Tree),层树是渲染流水线后续流程的基础结构。 有了绘制列表之后,就需要进入光栅化阶段了,光栅化就是按照绘制列表中的指令生成图片。每一个图层都对应一张图片,合成线程有了这些图片之后,会将这些图片合成为“一张”图片,并最终将生成的图片发送到后缓冲区。这就是一个大致的分层、合成流程。

需要重点关注的是,合成操作是在合成线程上完成的,这也就意味着在执行合成操作时,是不会影响到主线程执行的。这就是为什么经常主线程卡住了,但是 CSS 动画依然能执行的原因

# 关于分块

如果说分层是从宏观上提升了渲染效率,那么分块则是从微观层面提升了渲染效率。

通常情况下,页面的内容都要比屏幕大得多,显示一个页面时,如果等待所有的图层都生成完毕,再进行合成的话,会产生一些不必要的开销,也会让合成图片的时间变得更久。

因此,合成线程会将每个图层分割为大小固定的图块,然后优先绘制靠近视口的图块,这样就可以大大加速页面的显示速度。不过有时候, 即使只绘制那些优先级最高的图块,也要耗费不少的时间,因为涉及到一个很关键的因素——纹理上传,这是因为从计算机内存上传到 GPU 内存的操作会比较慢。

为了解决这个问题,Chrome 又采取了一个策略:在首次合成图块的时候使用一个低分辨率的图片。比如可以是正常分辨率的一半,分辨率减少一半,纹理就减少了四分之三。在首次显示页面内容的时候,将这个低分辨率的图片显示出来,然后合成器继续绘制正常比例的网页内容,当正常比例的网页内容绘制完成后,再替换掉当前显示的低分辨率内容。这种方式尽管会让用户在开始时看到的是低分辨率的内容,但是也比用户在开始时什么都看不到要好